

Estudos do Plano Decenal de Expansão de Energia 2035

Eletromobilidade: Transporte Rodoviário

Novembro de 2025

FICHA TÉCNICA

PDE 2035 | Estudos do Plano Decenal de Expansão de Energia 2035

Eletromobilidade: Transporte Rodoviário

Ministro de Estado

Alexandre Silveira de Oliveira

Secretário Executivo

Arthur Cerqueira Valerio

Secretário Nacional de Energia Elétrica

João Daniel de Andrade Cascalho

Secretária Nacional de Geologia, Mineração e Transformação Mineral

Ana Paula Lima Vieira Bittencourt

Secretário Nacional de Petróleo, Gás Natural e Biocombustíveis

Renato Cabral Dias Dutra

Secretário Nacional de Transição Energética e Planejamento **Gustavo Cerqueira Ataíde**

www.mme.gov.br

Composição dos cargos em 01 de outubro de 2025

Rio de Janeiro, 2025

Foto da capa: Pexels.

Presidente

Thiago Guilherme Ferreira Prado

Diretor de Estudos Econômico-Energéticos e Ambientais

Thiago Ivanoski Teixeira

Diretor de Estudos de Energia Elétrica

Reinaldo da Cruz Garcia

Diretora de Estudos do Petróleo, Gás e Biocombustíveis

Heloisa Borges Bastos Esteves

Diretor de Gestão Corporativa

Carlos Eduardo Cabral Carvalho

www.epe.gov.br

FICHA TÉCNICA

PDE 2035 | Estudos do Plano Decenal de Expansão de Energia 2035

Eletromobilidade: Transporte Rodoviário

EMPRESA DE PESQUISA ENERGÉTICA - EPE

Coordenação Executiva Angela Oliveira da Costa

Coordenação Técnica Angela Oliveira da Costa Marcelo C. Branco Cavalcanti Patrícia Feitosa Bonfim Stelling

Rachel Martins Henriques Rafael Barros Araujo

Equipe Técnica

Superintendência de Derivados de Petróleo e Biocombustíveis

André Soares Alves Bruna Souza Lopes Graça Bruno Rodamilans Lowe Stukart Letícia Gonçalves Lorentz Lucas dos Santos Rodrigues Morais Rayssa Gomes Pina Nogueira (estagiária)

Raquel Lopes Couto

Eletromobilidade: Transporte Rodoviário

Valor Público

Os estudos do Plano Decenal de Expansão de Energia (PDE) orientam a formulação de políticas públicas, ajudam a guiar as decisões de diversas partes interessadas, como governos, empresas e a sociedade civil, e contribuem para a segurança energética do País.

O Caderno de Eletromobilidade no transporte rodoviário, no âmbito do PDE 2035, busca reduzir a assimetria de informações ao disseminar os contextos internacional e nacional e apresentar as perspectivas de eletrificação de veículos leves e pesados no Brasil.

AVISOS

Esta publicação contém projeções acerca de eventos futuros que refletem a visão da Empresa de Pesquisa Energética (EPE) no âmbito do Plano Decenal de Expansão de Energia 2035 (PDE 2035). Tais projeções envolvem uma ampla gama de riscos e incertezas conhecidos e desconhecidos e, portanto, os dados, as análises e quaisquer informações contidas neste documento não são garantia de realizações e acontecimentos futuros.

Este documento possui caráter informativo, sendo destinado a subsidiar o planejamento do setor energético nacional.

A EPE se exime de responsabilidade por quaisquer ações e tomadas de decisão que possam ser realizadas por qualquer pessoa física ou jurídica com base nas informações contidas neste documento.

SUMÁRIO

- Contexto internacional
- Eletrificação de veículos leves no Brasil
- Eletrificação de ônibus no Brasil
- Eletrificação de caminhões no Brasil
- Considerações finais

Siglas e definições

Siglas

APS = Cenário da IEA na publicação World Energy Outlook 2023, que considera promessas anunciadas (*Announced Pledges Scenario*)

BEV = Veículo elétrico a bateria (*Battery Electric Vehicle*)

CI = Combustão Interna

MCI = Motor a Combustão Interna

FCEV = Veículo elétrico a célula de combustível (Fuel Cell Electric Vehicle)

GEE = Gases de efeito estufa

GNL = Gás natural liquefeito

GNV/GNC = Gás natural veicular / comprimido

HEV = Veículo híbrido (*Hybrid Electric Vehicle*)

IEA = Agência Internacional de Energia

MHEV = Micro híbrido (*Mild Hybrid Electric Vehicle*)

NDC = Contribuição Nacionalmente Determinada

NZE = Cenário da IEA na publicação World Energy Outlook 2023, que considera net zero em 2050 (Net Zero Emissions by 2050)

PBT = Peso bruto total

PBTC = Peso bruto total combinado

PHEV = Veículo híbrido plug-in (*Plug-in Hybrid Electric Vehicle*)

STEPS = Cenário da IEA na publicação World Energy Outlook 2023, que considera políticas atuais (*Stated Policies Scenario*)

SUV = Veículo utilitário esportivo (Sport Utility Vehicle)

VE = Veículo elétrico

Definições

Automóveis = Veículos destinados ao transporte de passageiros (ex. hatch, sedã, minivan, conversível, SUV e utilitários).

Comerciais leves = Veículos comerciais para transporte de pessoas e/ou carga, com PBT de até 3,5 toneladas (ex. picape, furgões e vans).

Veículos leves = Automóveis e comerciais leves

Veículos pesados = Caminhões e ônibus

Veículos elétricos = Veículos BEV + PHEV + FCEV

Veículos eletrificados = Veículos elétricos + HEV + MHEV

Net zero = Redução das emissões líquidas de GEE para zero.

Categorias de caminhões:

Semileves = 3,5 t < PBT < 6 t

Leves = $6 \text{ t} \le PBT < 10 \text{ t}$

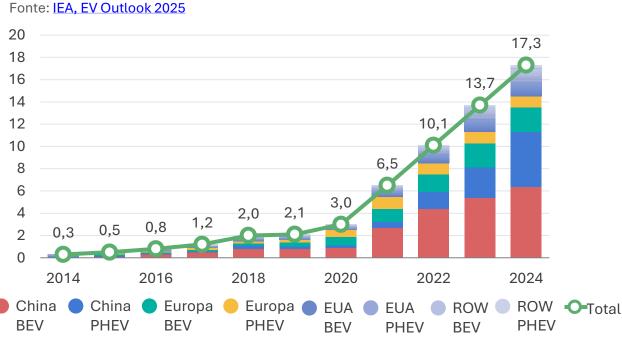
Médios = 10 t ≤ PBT < 15 t

Semipesados =

Caminhões-chassi com PBT ≥ 15 t e com CMT ≤ 45 t, ou Caminhões-trator com PBT ≥ 15 t e com PBTC < 40 t

Pesados =

Caminhões-chassi com PBT \geq 15 t e com CMT > 45 t, ou Caminhões-trator com PBT \geq 15 t e com PBTC \geq 40 t



Contexto internacional

A eletrificação está se estabelecendo como uma tecnologia do futuro

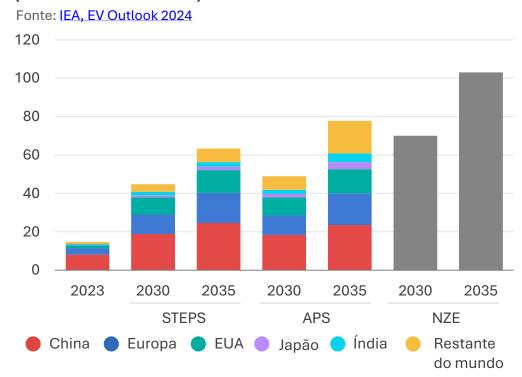
Vendas mundiais de automóveis elétricos (milhões de unidades)

- Em 2024, as vendas de automóveis elétricos superaram 17 milhões, pelo menos 3,5 milhões a mais que em 2023, representando um aumento de 25%.
- 20% dos veículos¹ vendidos em 2024 foram elétricos (BEV e PHEV). A maior parte do crescimento em 2023 e 2024 foi devido ao aumento de PHEV na China.

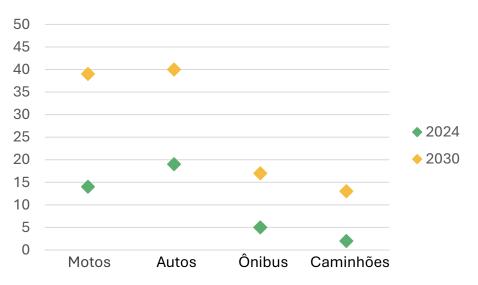
Nota1: automóveis e comerciais leves

Número de modelos elétricos disponíveis no mercado, 2015 - 2027

- Parte do aumento das vendas é explicado pela **evolução técnica** e **disponibilidade de novos modelos**. Essa evolução ocorreu, particularmente, com **maior autonomia** e **modelos maiores**, mais similares aos veículos a combustão interna mais vendidos.
- Há estimativa de incremento do número de modelos nos próximos anos, com 192 em 2026 e 204 em 2027, respectivamente.



Observa-se uma tendência de eletrificação mundial em motos e veículos leves


Vendas de automóveis elétricos em regiões selecionadas (milhões de unidades)

 Em todos os cenários da IEA, as vendas de veículos elétricos crescem significativamente.

Participação da eletrificação nas vendas por modo e cenário (%)

Fonte: IEA, EV Outlook 2025

Nota: Cenário STEPS (IEA)

- No entanto, o avanço da eletrificação depende tanto da região, quanto do tipo de veículo e do cenário. No cenário da IEA (STEPS), que considera políticas atuais, a participação de automóveis eletrificados nas vendas atinge 40% em 2030.
- A eletrificação tende a avançar mais rapidamente em motos e veículos leves. Ônibus e caminhões elétricos apresentam mais desafios de inserção no mercado, mesmo nos cenários mais otimistas.

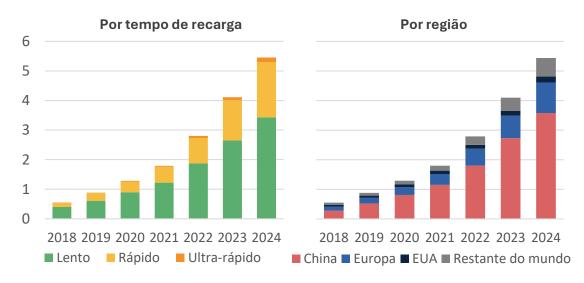
Com as principais montadoras estabelecendo metas ambiciosas de eletrificação

Metas de eletrificação das principais montadoras

Fonte: ICCT, Global Automaker Rating 2024/2025

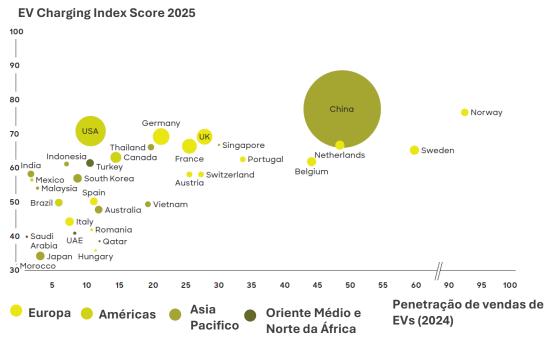
100% all-electric Tesla 100	50% by 2030 (U.S.) ^a 100% by 2035	VW: 80% of PCs by 2030 (EU) 55% by 2030 (North America) 50% by 2030 (China) Audi: 100% by 2033 (excl. China) \$koda: 70% by 2030 (EU) Bentley: 100% by 2030 Porsche: 80% by 2030	50% by 2025 ^a SAIC 71	BMW: 50% by 2030 Rolls-Royce: 100% by 2030 BMW 68	Renault: 100% PCs by 2030 (EU) Renault 66
resia i 100	- 3711 05	VWI 79	Tata Motors:	100% by 2035	Hyundai: 36%
100% of PCs by 2030 (EU) 50% by 2030 (U.S.)	50% by 2030° 100% by 2035	Geely: 50% by 2025* Volvo Cars: 90% by 2030*	30% LDVs by 2030 Jaguar 100% by 2025 Land Rover: 60% by 2030 100% by 2035 Tata Motors 63	Ford 60	by 2030 Kia: 38% by 2030 Hyundai-Kia 53
	Mercedes-Benz 89	Geelyi 76	40% by 2030	40% by 2030°	25% by 2030
75% by 2030°	80% by 2025°	100% since 2022°			
, 5.4. 5, 2555			Honda 60	Cheryl 51	
			40% by 2030	Toyota: 32% by 2030 Lexus: 100% by 2030	Mazda 38 15% by 2030 (India) 20% by 2030 (Japan) 80% by 2030
Chang'an 94	Great Wall 88	BYD 75	Nissan 60	Toyotal 48	Suzukij 32

- A eletrificação continua avançando entre as montadoras, com cada vez mais modelos com eficiência, velocidade de recarga e autonomia melhoradas.
- GM e Honda introduziram novos modelos elétricos com alta performance em 2024.
 Nissan anunciou meta para abandonar CI, e Hyundai-Kia elevou sua meta de eletrificação.
- No entanto, Ford, Tata Motors, Dacia (Renault), Mini (BMW) e Volvo (Geely) reduziram ou retiraram meta de eletrificação completa.
- Nenhuma das 21 montadoras aumentou consideravelmente seus investimentos em VEs no ano de 2024
- Honda associou a compensação de seu CEO às emissões da montadora. Em contraste, a GM removeu os incentivos para que executivos reduzam emissões.



Crescimento viabilizado por uma expansão da infraestrutura de recarga...

Carregadores publicamente acessíveis por tipo e região (milhões)


Fonte: IEA, EV Outlook 2025

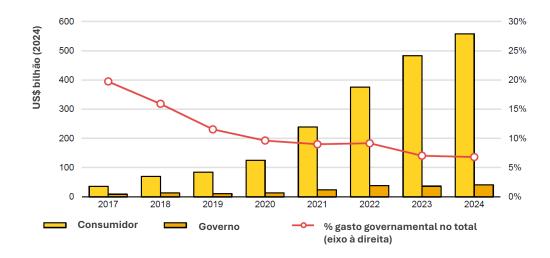
- Investimentos cada vez maiores em infraestrutura de recarga também favorecem a escolha por veículos elétricos, particularmente na China, Europa e nos Estados Unidos, regiões com maiores vendas de veículos deste tipo.
- Em 2024, houve um acréscimo de 1,3 milhão de carregadores públicos, representando um estoque de 41,3 milhões de carregadores no mundo.

Disponibilidade e qualidade de infraestrutura de recarga

Fonte: Roland Berger EC Charging Index 2025

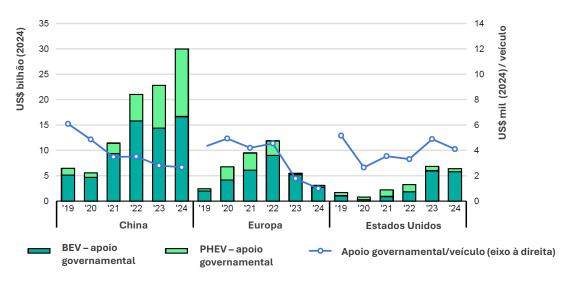
O Tamanho da bolha – vendas de EVs

 Percebe-se que a disponibilidade e qualidade de infraestrutura de recarga favorece uma maior participação de elétricos nas vendas.



Como também por incentivos governamentais...

Gastos governamentais e dos consumidores em veículos elétricos (US\$ bilhão)

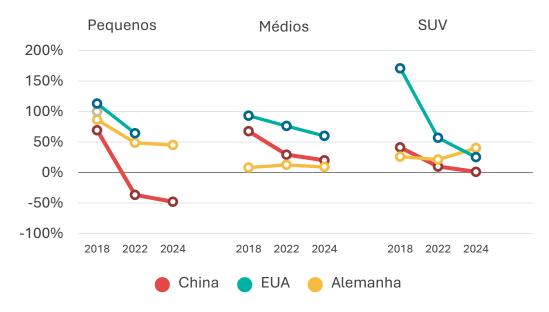

Fonte: IEA, EV Outlook 2025

- Globalmente, com o avanço e ampliação dos mercados para veículos elétricos, investimentos privados continuam crescendo, mesmo diante da redução da participação dos incentivos governamentais.
- Incentivos por veículo estão sendo reduzidos em todos os principais mercados.

Auxílio do governo no investimento em veículos elétricos, carregamento e baterias (US\$ bilhão)

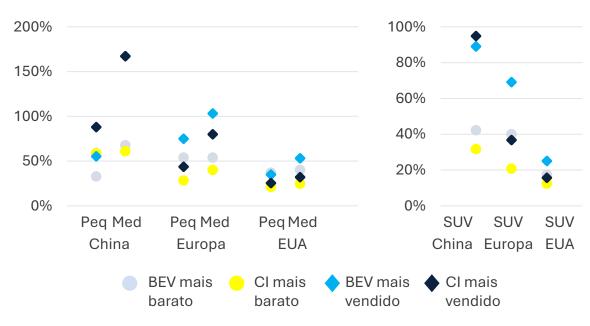
Fonte: IEA, EV Outlook 2025

Na China ainda há outros investimentos para a eletrificação, além de restrições a veículos a combustão interna. Na Europa, a redução nos incentivos à eletrificação veicular e sua infraestrutura desacelerou a adoção da eletromobilidade neste mercado.



... e também pela queda de preços dos veículos ...

Diferencial de preços entre veículos elétricos e a combustão interna (sem subsídios)

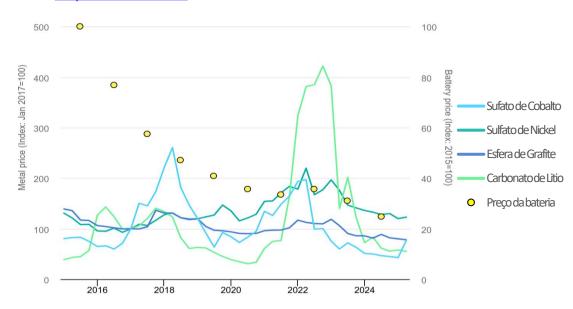

Fonte: IEA, EV Outlook 2025

 O diferencial de preços entre veículos elétricos e tradicionais é cada vez menor, particularmente na China, explicando sua crescente adoção.

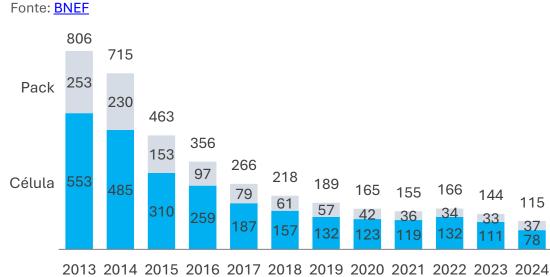
Preço de revenda de veículos elétricos e tradicionais em relação ao poder aquisitivo da população

Fonte: IEA, EV Outlook 2024

Veículos elétricos de menor preço favorecem a disseminação da tecnologia. Importante notar que os elétricos mais vendidos não são os de menor preço, o que leva à conclusão que os veículos elétricos ainda estão restritos a famílias com maior poder aquisitivo, mesmo na China.



... impulsionada pela evolução dos preços das baterias

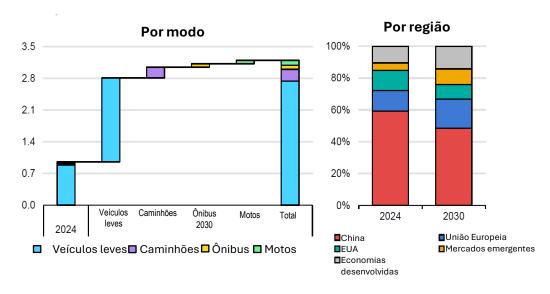

Preços de baterias e de seus componentes

Fonte: IEA, EV Outlook 2025

- A redução dos preços na bateria ocorreu por uma normalização dos fluxos de comércio e pela disseminação de novos tipos, com composições químicas diferentes.
- Apesar do aumento da demanda por baterias, que causou um pico nos custos de aquisição das matérias-primas utilizadas nos últimos anos, os preços retomaram a trajetória de redução.

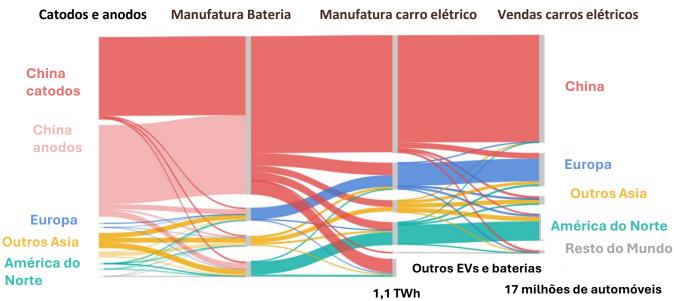
Preço médio de baterias para veículos elétricos (2024 US\$/kWh)

- Inovações tecnológicas, melhoria na manufatura das baterias incluindo avanços com catodos de menor custo, como a LFP (Lithium Iron Phosphate), devem contribuir para a redução dos precos das baterias, podendo alcançar US\$ 80/kWh em 2030 (BNEF).
- A conjuntura de sobreoferta na China fez o preço médio da bateria a LFP cair para US\$ 53/kWh no primeiro quadrimestre de 2024, uma queda de 51% frente aos preços de 2023 (BNEF).



Uma importante barreira à eletrificação é a oferta futura de baterias

Volume de baterias anual por região e cenário (TWh)

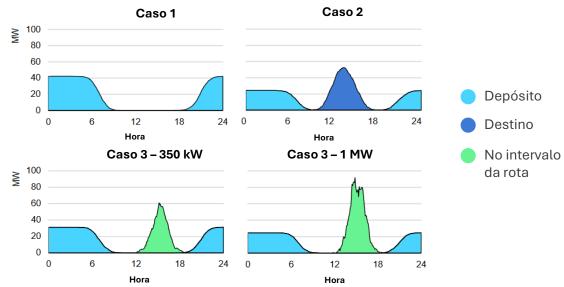

Fonte: IEA, EV Outlook 2025

As crescentes vendas requerem volume significativo de minerais para a construção das baterias. Ademais, há necessidade de evolução da rede interligada de energia elétrica de maneira a atender a recarga rápida de veículos.

Distribuição geográfica de oferta da cadeia produtiva de baterias

Fonte: IEA, EV Outlook 2025

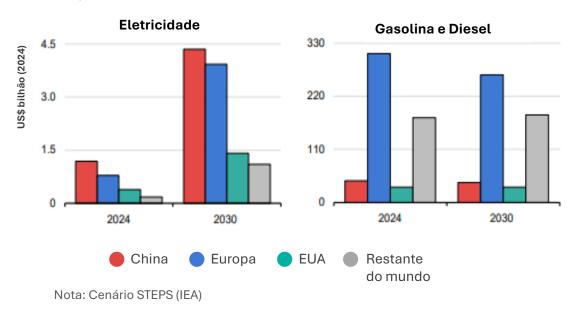
- A oferta de baterias requer investimentos em mineração e processamento custosos e intensivos em energia e emissões.
- Destaca-se o fator geopolítico, considerando a garantia de segurança energética e avaliando o contexto das localidades potencialmente ofertantes dos minerais estratégicos.



E os impactos sobre o perfil de carga e sobre a arrecadação dos Estados

Impactos do carregamento de uma frota de mil caminhões sobre a carga do sistema elétrico

Fonte: IEA, Batteries and Secure Energy Transitions



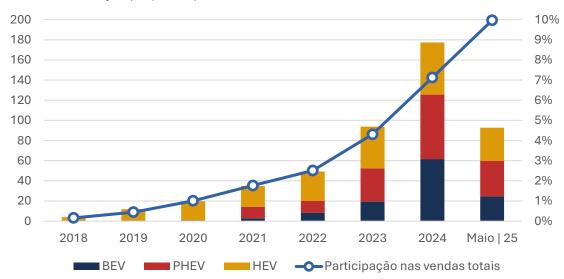
Nota: Caso 1: carga à noite; Caso 2: Carregamento durante o dia durante carga e descarga; Caso 3: Carga rápida com 350 kW; Caso 4: Carga rápida com 1 MW

A carga de caminhões pesados elétricos durante o dia pode **causar picos de carga em horários e regiões pouco usuais**, podendo exigir investimentos em transmissão e distribuição de energia, em maior capacidade de geração e/ou em sistemas de baterias.

Impactos da eletrificação sobre a arrecadação (US\$ bilhões)

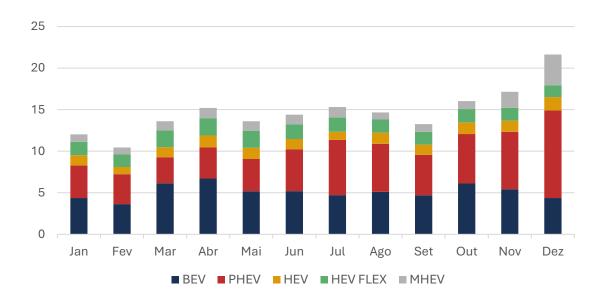
Fonte: IEA, EV Outlook 2024

- Uma parcela significativa da arrecadação dos países é advinda dos tributos sobre o consumo de derivados de petróleo, sendo particularmente significativo para a Europa e o Brasil.
- Adaptações no orçamento público terão que ser feitas para obter novas fontes de arrecadação, considerando as possíveis perdas tributárias decorrentes da substituição tecnológica.


Eletrificação de veículos leves no Brasil

A eletrificação avança no Brasil

Venda de veículos eletrificados no Brasil e participação nas vendas totais (mil unidades, %)

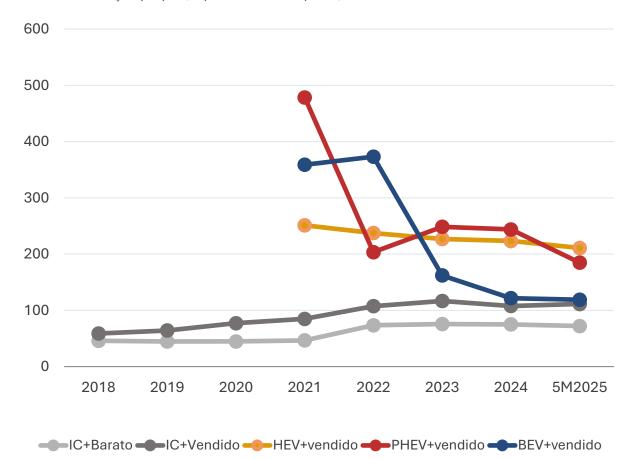

Fonte: Elaboração própria, a partir de ABVE e Anfavea

- Venda de eletrificados continua a aumentar rapidamente, assim como a participação nas vendas totais.
- Em comparação com o ano anterior, as vendas de veículos eletrificados em 2024 tiveram aumento de 89%, com destaque para o crescimento de 219% dos BEVs.

Vendas mensais de eletrificados no Brasil em 2024 (mil unidades)

Fonte: Elaboração própria, a partir de ABVE

- Predominância de modelos híbridos começa a ser substituída por uma maior venda de veículos plug-in e elétricos.
- Dentre os modelos híbridos, a modalidade flex representa cerca de 40% das vendas.

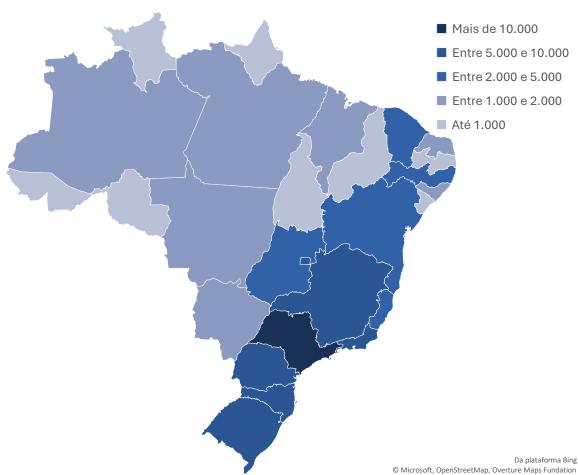


A redução dos preços dos veículos viabilizou o aumento dos licenciamentos

Preços de veículos selecionados no Brasil (mil R\$ jun/2025)

Fonte: Elaboração própria, a partir de Autoesporte, ABVE e Fenabrave

- Preço médio dos veículos eletrificados mais vendidos no Brasil caiu significativamente nos últimos anos.
- Essa redução foi viabilizada pela maior oferta de modelos importados e com incentivos em alguns estados, o que ampliou o acesso a essas tecnologias — ainda que os valores continuem relativamente altos.
- Enquanto isso, os preços dos modelos a combustão interna de produção nacional aumentaram, ultrapassando ou se aproximando da faixa dos R\$ 100 mil.
- Esse aumento de preços de aquisição reduziu o diferencial de preços entre modelos a combustão e eletrificados, favorecendo a competitividade de HEV, PHEV e BEV e contribuindo para o crescimento de suas vendas.



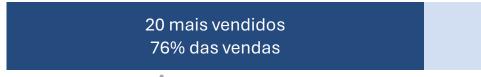
Apesar de crescente, as vendas de eletrificados seguem concentradas regionalmente

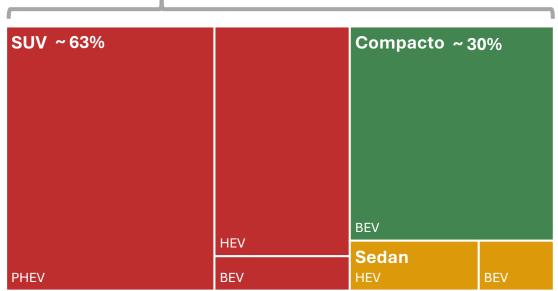
Venda média anual de veículos eletrificados por estado (2022 – 2024)

Fonte: Elaboração própria, a partir de ABVE

- Há uma forte correlação entre o PIB dos estados e a venda acumulada de veículos eletrificados em cada UF entre 2022 e 2024.
- Além disso, algumas cidades e estados oferecem incentivos aos veículos eletrificados:
 - São Paulo veículos elétricos, híbridos e movidos a hidrogênio não estão sujeitos ao rodízio municipal de circulação; e recebem incentivo tributário na forma de reembolso da quota-parte do IPVA/SP nos 5 primeiros anos de tributação incidente ao veículo¹.
 - Distrito Federal isenção de IPVA para veículos elétricos e híbridos².
 - **Rio de Janeiro** alíquota reduzida de IPVA para veículos elétricos (0,5%) e híbridos (1,5%)³.
 - Pernambuco, Paraíba e Rio Grande do Norte isenção de IPVA para veículos elétricos⁴.

Fontes: 1 – LEI Nº 15.997, DE 27 DE MAIO DE 2014; 2 – Secretaria de Economia DF; 3 – Secretaria de Fazenda RI; 4 – Secretaria da Fazenda PE, Secretaria da Fazenda PB Secretaria da Fazenda RN





A concentração também ocorre nos modelos vendidos...

Modelos eletrificados mais vendidos em 2024 no Brasil por categoria (%)

Fonte: Elaboração própria, a partir de ABVE

Consumo energético médio dos modelos mais vendidos (MJ/km)

Fonte: Elaboração própria, a partir de PBEV

Sedan 1,0

Compacto 0,4

SUV 0,9

- Modelos maiores, como SUVs e picapes, seguem dominando a oferta de veículos elétricos¹ no mundo. Em 2024, cerca de 70% dos modelos disponíveis pertenciam ao segmento de veículos grandes, SUVs² ou picapes. O que se reflete nas vendas:
 - No Brasil, os SUVs PHEV representaram quase metade das vendas de elétricos em 2024. A diferença de preço dos PHEVs em relação aos modelos a combustão interna caiu para menos de 70%. Para os SUVs BEV, essa diferença é maior que 80%.
 - Essa redução do diferencial de preço incentivou a penetração de PHEVs no segmento de SUVs, enquanto modelos BEV ganharam força na categoria de compactos e médios. Nessa categoria, a diferença de preço chegou a menos de 40% em 2024.
- SUVs elétricos oferecem maior autonomia devido ao espaço disponível para baterias maiores. No entanto, isso também implica maior consumo energético e maior demanda por minerais críticos.

Notas: 1) Veículos elétricos englobam BEVs e PHEVs.

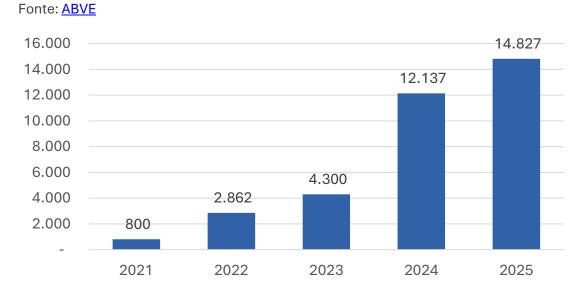
2) Nos Estados Unidos e Europa, os SUVs correspondem a 75% e 60% das vendas de elétricos, respectivamente.

Fonte: Global EV Outlook 2025.

... e nichos específicos

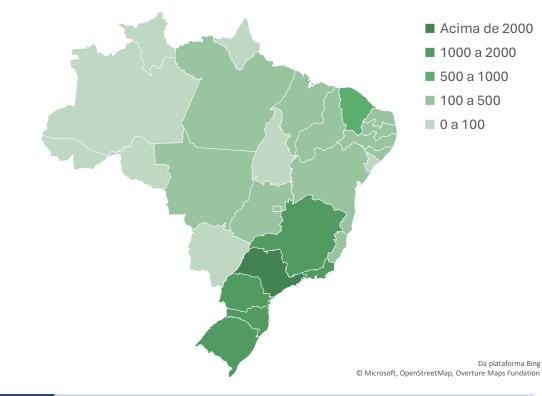
Renault Kangoo E-Tech 50 vendidos em 2024*

Mercedes eSprinter 14 vendidos em 2024*


Notas: *Vendas acumuladas até junho, segundo ABVE.

- A pandemia iniciou um processo de disseminação do comércio eletrônico, que eleva a demanda por transportes diretamente até as residências (*last-mile delivery*), efetuada principalmente por comerciais leves.
- Planos de Mobilidade Urbana devem levar a crescentes restrições às emissões e à circulação de veículos poluentes em áreas urbanas, principalmente metrópoles.
- **Empresas,** especialmente as com matrizes europeias, buscam reduzir suas emissões devido a **compromissos ESG**.
- Empresas com alto consumo podem adquirir energia elétrica diretamente no Ambiente de Contratação Livre (ACL), reduzindo o custo de combustíveis. Além disso, a geração distribuída pode diminuir ainda mais a pegada de carbono da empresa, potencialmente reduzindo também o custo de combustíveis.

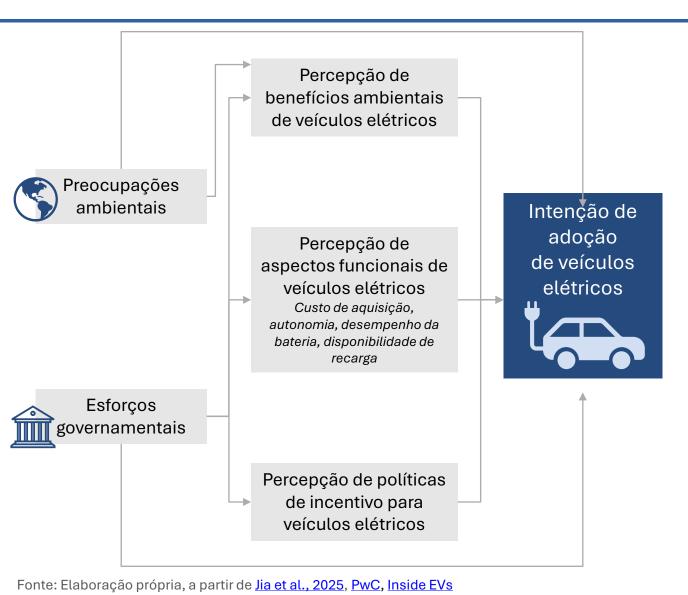
A infraestrutura de recarga no Brasil evoluiu, mas ainda é insuficiente


Evolução da infraestrutura de recarga no Brasil (mil unidades)

- O número de eletropostos está em crescimento no Brasil, porém a infraestrutura de recarga ainda é altamente concentrada em São Paulo, onde estão localizados 30% dos eletropostos do País.
- Nos estágios iniciais da eletrificação, a expansão da infraestrutura pública de recarga – em especial dos carregadores rápidos – é fundamental para reduzir o tempo de recarga, aumentar a conveniência e tornar os veículos elétricos mais atrativos para a população.

Infraestrutura de carregamento por estado

Fonte: ABVE


Carregadores lentos 84%

Várias dimensões influenciam as intenções de adoção de veículos elétricos

A adoção de veículos elétricos também está conectada à percepção pública da tecnologia, que varia conforme o perfil demográfico e o estágio de eletromobilidade em cada país ou região. Além disso, fatores econômicos, ambientais e estruturais moldam a intenção de adoção.

Fatores que impulsionam

- **Economia de combustível**: Redução de custos operacionais é o principal critério de escolha para muitos consumidores.
- Recarga domiciliar: A conveniência de carregar o veículo em residências facilita a adoção.
- Menor impacto ambiental: A percepção de benefícios ambientais tende a influenciar positivamente a intenção de adoção.

Barreiras à adoção

- Tempo de carregamento: A duração da recarga ainda preocupa consumidores.
- Autonomia e vida útil da bateria: Há receios quanto à durabilidade e à viabilidade dos VEs em longas distâncias.
- Infraestrutura pública limitada: Cerca de 65% dos proprietário de VEs no mundo dependem de soluções privadas de recarga, o que reforça a necessidade de investimentos em infraestrutura.

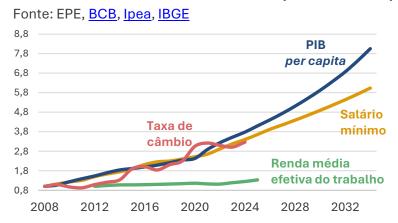
Montadoras instaladas no Brasil privilegiam híbridos no decênio

Investimentos das principais montadoras no Brasil

Fonte: MDIC, AutoData

Fabricante	Investimento (em R\$ de 2024)	Objeto	Região
Toyota	R\$ 11 bilhões	Híbridos flex	Brasil
Hyundai	R\$ 5,4 bilhões	Híbridos, elétricos e carros a hidrogênio	SP e GO
BYD	R\$ 5,5 bilhões	Híbridos e elétricos	Bahia
GM	R\$ 7 bilhões	Híbridos	Brasil
Stellantis	R\$ 30 bilhões	Híbridos e elétricos	MG, PE e RJ
Volkswagen	R\$ 16 bilhões	Híbridos, elétricos e total flex	Brasil
GWM	R\$ 10 bilhões	Híbridos e elétricos	Brasil
Renault	R\$ 5,1 bilhões	Híbridos e elétricos	PR
CAOA	R\$ 4,5 bilhões	Híbridos e elétricos	Brasil
Nissan	R\$ 2,8 bilhões	Híbridos e elétricos	Brasil
Volvo	R\$ 1 bilhão	Infraestrutura	PR
JLR	R\$ 5,9 milhões	Baterias	SP
GAC	R\$ 5,2 bilhões	Híbridos e elétricos	Brasil
BMW	R\$ 500 milhões	Híbridos e elétricos	Brasil

- No total, as montadoras pretendem investir, até 2030, aproximadamente R\$130 bilhões.
- Esse aumento de investimentos pode ser explicado por uma série de fatores, dentre estes:
 - Calendário de aumento do imposto de importação, iniciado em 2024.
 - Políticas públicas de incentivo à Neoindustrialização e ao desenvolvimento sustentável, como o MOVER.
 - O aumento de preços dos veículos vendidos no Brasil, com possibilidade de maiores lucros.



Recuperação da renda e queda dos juros fomentam licenciamentos

Indicadores macroeconômicos (ano 2008 = 1)

Indicadores de crédito (%)

Nota: Os valores de 2025 são histórico até maio, e anualizados.


2016

Aquisição e financiamento de automóveis (ano 2008 = 1) Fonte: EPE, BCB, IBGE

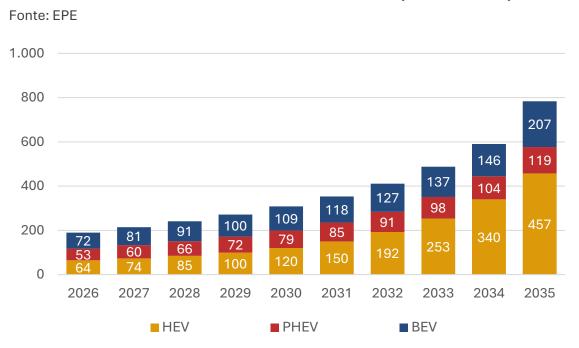
Licenciamentos veículos leves (ano 2008 = 1)

Fonte: EPE, com dados históricos de Anfavea

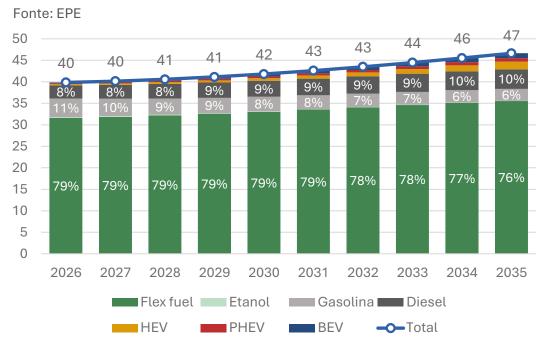
- Crescimento do mercado de veículos recorde em 2024 puxado, sobretudo, pelo crescimento do PIB, aumento do salário mínimo, maior acesso e melhores condições de crédito.
- Entretanto, a taxa de juros apresenta uma tendência de crescimento a partir do final de 2024, o que contribui para o encarecimento do crédito, que tem o potencial de aumentar o endividamento das famílias. Os juros para aquisição de veículos acompanham a taxa SELIC.
- Com o aumento dos preços dos automóveis e considerando a renda média do trabalhador brasileiro, percebe-se que, quando da compra de um automóvel no Brasil, uma alta parcela de renda é despendida, como demonstra a curva de comprometimento da renda.

2008

2012



2020

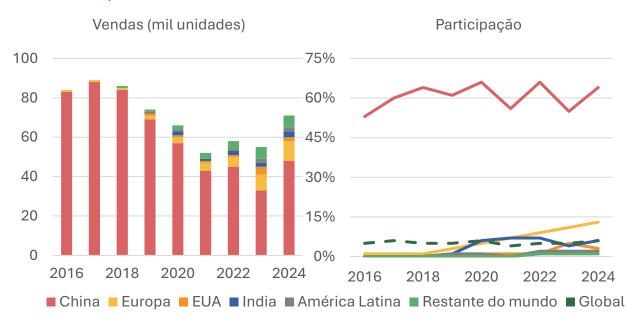

2024

A eletrificação da frota de veículos leves deve continuar aumentando no decênio

Licenciamento de veículos leves eletrificados (mil veículos)

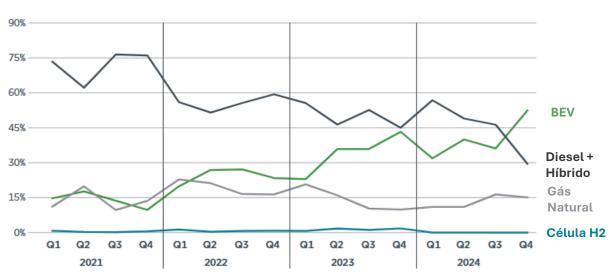
Frota de veículos leves por motorização (milhão de veículos)

- O licenciamento de veículos leves eletrificados deve manter uma trajetória de crescimento até 2035, chegado a 23%, com destaque para maior participação de híbridos no licenciamento anual;
- Apesar da expansão, o alto custo de aquisição ainda restringe a demanda, especialmente nos primeiros anos, com maior penetração entre consumidores de veículos premium.
- A frota circulante permanecerá predominantemente flex fuel, que seguirá como a principal tecnologia até 2035, respondendo por 76% dos veículos leves em uso.
- A participação dos eletrificados na frota total cresce de forma gradual e atinge 8% em 2035.


Eletrificação de ônibus no Brasil

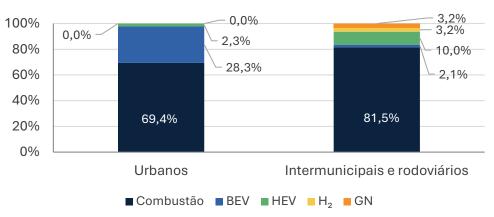
A eletrificação de ônibus se acelera globalmente

Vendas de ônibus elétricos


Fonte: IEA, EV Outlook 2025

- China mostra liderança pioneira nas vendas de ônibus elétricos devido a apoio político, disponibilidade de produção doméstica e incentivos econômicos.
- Na América Latina, 32 cidades em 11 países estabeleceram metas para eletrificar as frotas. A frota de ônibus elétricos cresceu passou de 801 em 2017 para 6.055 ao final de 2024 (+33,5% ao ano), com destaque para Santiago e Bogotá (ICCT).

Vendas de ônibus elétricos na Europa (%)


Fonte: ICCT

- A Europa concentra grande número de cidades com metas de implementação de ônibus de zero emissão e uma importante produção local. Mas a eletrificação não está sendo a única solução adotada.
- Em 2024, as vendas de ônibus urbanos elétricos ficaram em 52%, superando, pela primeira vez, as vendas de ônibus com motores a combustão.

Políticas públicas fomentam a inserção de ônibus elétricos na frota nacional

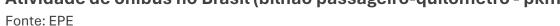
Licenciamento previsto em 2035 (%)

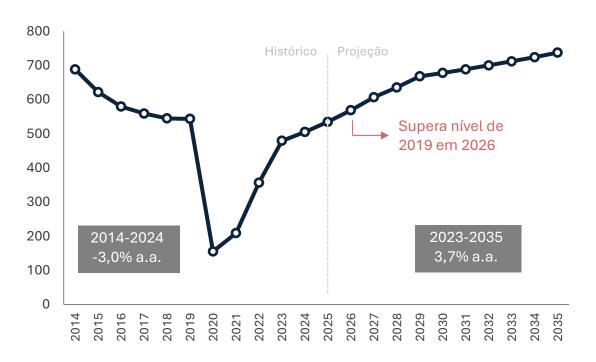
- A eletrificação de ônibus deve se concentrar no interior de perímetros urbanos. Em 2035, projeta-se que os BEV representem 28% do total de licenciamentos de ônibus urbanos no Brasil.
- Obstáculos referentes aos elevados preços de aquisição de ônibus elétricos têm sido superados via novos modelos de negócios.
 Outras barreiras para a eletrificação estão especialmente relacionadas à infraestrutura de carregamento.
- A necessidade de maior autonomia e os desafios associados à instalação de carregadores em regiões rurais devem dificultar a eletrificação em ônibus intermunicipais e rodoviários, motivo pelo qual espera-se uma adoção predominante de veículos híbridos.

PAC - Mobilidade Renovação da Frota

- Na seleção 2023, já concluída, foi disponibilizado um montante de R\$ 10,6 bilhões para a aquisição de 2.296 ônibus elétricos, 3.015 ônibus com padrão de emissões Euro VI e 39 veículos sobre trilhos, levando à renovação de frota e equipamentos de 7 estados e 61 municípios.
- A União, por meio do Novo PAC (Renovação da Frota), já disponibilizou
 R\$ 7,3 bilhões para ônibus elétricos.
- A seleção 2025, em fase de contratação e análise de propostas, prevê um investimento de R\$ 4,4 bilhões destinados à renovação de frota, sendo elegíveis ônibus elétricos e equipamentos de recarga, ônibus com padrão de emissões Euro VI, veículos sobre trilhos e barcos para transporte aquaviário.

Investimentos - Seleção 2023 (bilhões R\$)

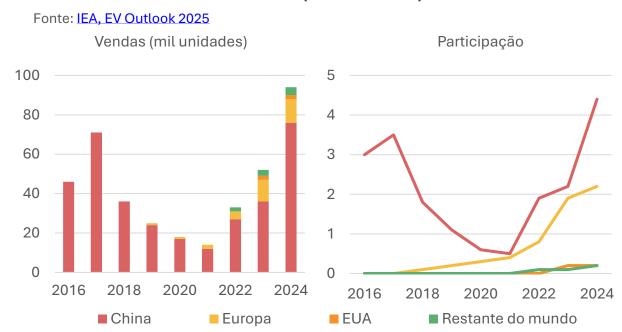




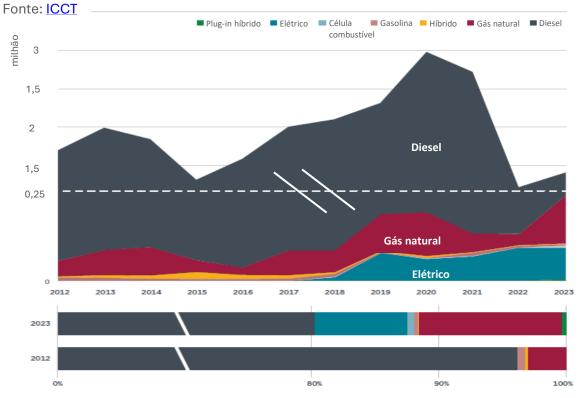
No Brasil, a demanda por ônibus tende a aumentar

Atividade de ônibus no Brasil (bilhão passageiro-quilômetro - pkm)

- Projeta-se a retomada tanto do crescimento do PIB per capita, como do emprego e da distribuição de renda para a próxima década. Isso deve influenciar na recuperação da demanda por transporte de passageiros, que cresceu 3,4% a.a. entre 2000 e 2014, se retraiu 3,0% a.a. entre 2014 e 2024, e que de 2023 a 2025 cresce à taxa de 3,7% a.a..
- Apesar do crescimento das vendas de veículos leves novos, a atividade do transporte rodoviário individual deve aumentar 2,2% a.a., frente a um crescimento total da demanda por mobilidade de 3,4% a.a..
- Em um contexto de atendimento total da demanda por mobilidade, a demanda por transporte de passageiros rodoviários coletivos em ônibus é impulsionada.
- Em 2035, a frota de ônibus atinge 497 mil veículos, com 48,5 mil unidades de ônibus eletrificados, sendo 43,5 mil unidades puramente elétricos (BEV).



Eletrificação de caminhões no Brasil

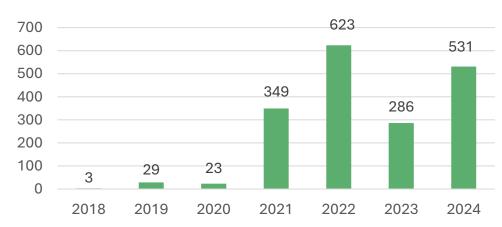

A eletrificação de caminhões avança lentamente no mundo

Vendas de caminhões elétricos (mil unidades)

A China também está à frente quando se trata de eletrificação de caminhões. Mas a inserção ainda é muito inferior quando comparada aos ônibus. Nos modelos mais pesados, a venda de caminhões a GNL está se destacando (ICCT).

Vendas e penetração de tecnologias limpas em caminhões na China

A proporção de caminhões com propulsão alternativa aumentou muito na China. Este crescimento ocorreu em grande parte pela desaceleração da economia e redução no mercado total. Contudo, mesmo nestas condições, o mercado de veículos comerciais segue dominado pelo óleo diesel.



Há espaço para caminhões elétricos leves e médios no Brasil

Caminhões elétricos novos licenciados no Brasil

Fonte: Denatran, Fenabrave, Anfavea e PNME

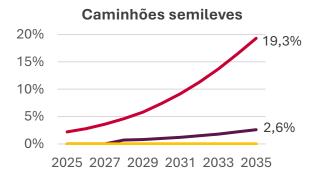
- O crescimento do volume de licenciamentos de caminhões é atribuído à premissa de crescimento econômico.
- No Brasil, as vendas de caminhões elétricos avançaram rapidamente nos últimos anos. Particularmente em caminhões menores para uso urbano, por serem modelos mais adequados para entrega de última milha (last-mile delivery).
- Pressões ESG e a possibilidade de negociar a compra de eletricidade no Mercado Livre de Energia, além da possibilidade de geração distribuída, também estimulam a adoção de caminhões elétricos.

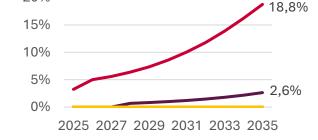
MINISTÉRIO DE BRASILIE

Principais frotistas de caminhões elétricos no Brasil

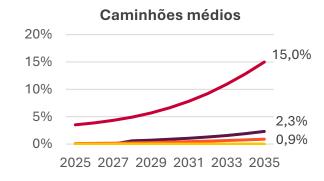
Fonte: PNME

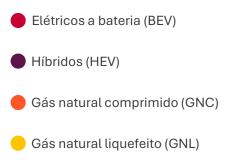
Empresa	Especialidade	Origem da frota	Caminhões
Ambev	Fabricante de bebidas	JAC e VWCO	255
JBS	Alimentos à base de proteína	JAC	200
DHL	Serviços de logística	JAC	40
Coca Cola Femsa	Fabricante de bebidas	VWCO	31
Magazine Luiza	Varejo	JAC	23
Pepsico	Alimentícia e bebidas	JAC	10
Heineken	Fabricante de bebidas	JAC	5

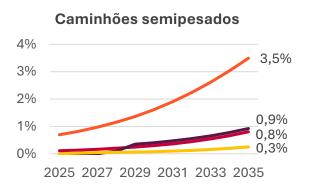

- Cresce o número de frotistas comprometidos a reduzir as emissões por meio do uso de caminhões elétricos. Isso impulsiona as vendas de caminhões leves e médios, tanto os elétricos como aqueles movidos a gás natural.
- A possibilidade de recarregar baterias durante carga e descarga e à noite otimiza utilização.

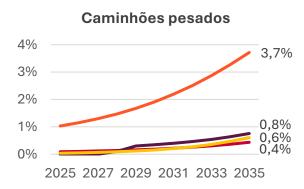

Disseminação gradual da eletrificação em novos caminhões

Penetração de motorizações alternativas no licenciamento de novos caminhões, por categoria (%)


20%

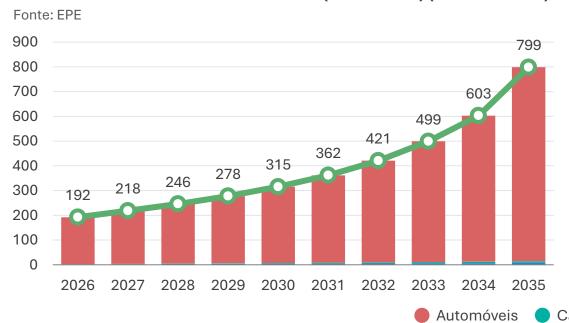

Fonte: EPE

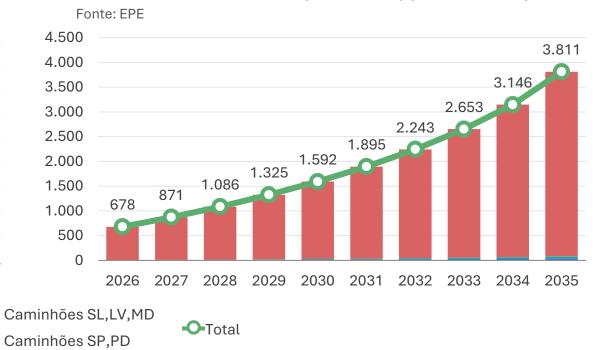




Caminhões leves

- Em 2035, projeta-se que os **veículos munidos de motorização alternativa** devem representar **9,5% do licenciamento total**.
- A eletrificação de veículos de transporte de cargas deve se concentrar nos caminhões semileves, leves e médios, enquanto os semipesados e pesados devem ter menor impacto da eletrificação, por limitações associadas à necessidade de maior autonomia e de uma infraestrutura de recarga distribuída e disponível em todo os País.


Resultados


A frota de elétricos ganha participação, e cresce exponencialmente

Ônibus

Licenciamento de veículos elétricos (BEV+PHEV) (mil unidades)

Frota de veículos elétricos (BEV+PHEV) (mil unidades)

- O licenciamento de veículos elétricos a bateria cresce linearmente, e começa a ganhar participação relevante. Com as vendas de automóveis leves ofuscando o número de unidades pesadas licenciadas no horizonte decenal.
- A demanda por baterias passa de 7,1GWh em 2025 para 19,7GWh em 2035, incluindo as baterias dos híbridos.

Nota: automóveis e comerciais leves

A frota de veículos elétricos no Brasil cresce exponencialmente, com a demanda de eletricidade passando de 627 GWh em 2025 para 7,8 TWh em 2035.

Considerações finais

Considerações finais

- A eletrificação do transporte rodoviário continua a acelerar, se estabelecendo como a principal tecnologia do futuro para diversos países. A adoção está sendo particularmente intensa em regiões como China, EUA e Europa.
- Investimentos em distribuição, transmissão e geração de eletricidade são necessários e também podem se constituir em um importante desafio à expansão desta tecnologia veicular.
- Incentivos governamentais e investimentos públicos e privados em redes de carregamento público auxiliam a disseminação. Montadoras, motivadas pela regulação, crescentemente investem na eletrificação, e divulgam metas de penetração dessa nova tecnologia.
- Compromissos ESG e regulatórios, aumento da autonomia e da crescente disponibilidade de novos modelos elétricos, assim como a queda dos preços das baterias, devem continuar acelerando a penetração de veículos elétricos.
- Uma importante barreira é a disponibilidade de oferta de baterias. Uma rápida eletrificação pode levar à insuficiência de oferta de minerais estratégicos, com reflexos geopolíticos, devido à concentração da produção e do processamento desses materiais.
- Em um contexto de segurança energética, os países deverão promover novas fontes de arrecadação e/ou a previsibilidade orçamentária, caso a demanda por combustíveis fósseis sofra redução expressiva, pela entrada de tecnologias alternativas. No caso do Brasil, esse efeito possivelmente será mais sentido após o horizonte decenal, à medida em que o licenciamento de alternativas se tornar mais expressivo, deslocando demanda de combustíveis fósseis.

Considerações finais

- O Brasil, por suas potencialidades na produção de bioenergia e energia hidrelétrica, com perspectivas de geração expressiva eólica e solar, possui diversas possibilidades à economia de baixo carbono. Neste contexto, a eletromobilidade surge como uma das alternativas para descarbonização do transporte rodoviário nacional.
- Os preços dos modelos, infraestrutura de recarga a ser ampliada e o perfil do parque fabril local (com foco em híbridos) induzem à produção de eletrificados para oferta no mercado premium e para os consumidores dos segmentos de maior renda. Em 2035, os veículos leves eletrificados (híbridos e elétricos) representarão 23% dos licenciamentos desta categoria, contabilizando 784 mil unidades, e a frota de híbridos e elétricos alcançará 3,7 milhões de veículos.
- Para veículos pesados, a eletrificação deve avançar em nichos, como a entrega em última milha por caminhões leves e semileves (ambas com 19% dos licenciamentos para cada categoria). Para caminhões semipesados e pesados, tecnologias híbridas e a gás natural devem se expandir mais do que os elétricos. Para ambas as categorias, há manutenção do domínio da combustão interna a diesel (94% das vendas em 2035). A frota de caminhões eletrificados (BEV e híbridos) alcançará 43 mil veículos no final do decênio.
- Em 2035, a frota de ônibus eletrificados (BEV+PHEV+HEV) no Brasil atingirá 48,5 mil unidades, com 43,5 mil unidades puramente elétricos. Tal incremento ocorre por meio de políticas públicas de incentivo à aquisição de ônibus elétricos por estados e municípios. A União, através do Novo PAC (Renovação da Frota), já disponibilizou R\$ 7,3 bilhões (Seleção 2023), com expectativas de novos incentivos em 2025 (Seleção 2025).
- A frota de veículos elétricos no Brasil cresce exponencialmente, com a demanda de eletricidade passando de 627 GWh em 2025 para 7,8 TWh em 2035.

Clique <u>aqui</u> e acesse todos os estudos do PDE 2035

Siga a EPE nas redes sociais e mídias digitais:

